Simultaneous Binding of $\mathrm{Pt}(\mathrm{II})$ to Three Different Sites (N7, N1, N3) of a Guanine Nucleobase

Gabriele Raudaschl-Sieber, ${ }^{1 \mathrm{a}}$ Helmut Schöllhorn, ${ }^{\text {1b }}$ Ulf Thewalt, ${ }^{1 \mathrm{lb}}$ and Bernhard Lippert*1a

Contribution from the Anorganisch-Chemisches Institut, Technische Universität München, 8046 Garching, FRG, and Sektion für Röntgen- und Elektronenbeugung,
Universität Ulm, 79 Ulm, FRG. Received December 18, 1984

Abstract

Reaction of $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ with 9 -ethylguanine, GH , gives three products: the mononuclear complex $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right]^{2+}(\mathbf{1})$, which contains G platinated at N 7 , the dinuclear complex $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{G}) \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3+}$ (2), which contains the deprotonated 9 -ethylguanine ligand platinated at N 7 and N 1 , and the trinuclear complex $\left\{\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G})\right\}^{5+}(3)$, which has a deprotonated guanine ligand platinated at $\mathrm{N} 7, \mathrm{~N} 1$, and N 3 . Formation of 3 occurs on addition of $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ to an aqueous solution of $\mathbf{1}$ via the intermediate $\mathbf{2}$ even if no base is added. Its formation is rationalized in terms of an electron-releasing effect of the Pt atom substituting for the proton at N 1 , similar to the situation in complexes of 1 -methyluracil and 1-methylthymine containing a $\mathrm{Pt}(\mathrm{II})$ coordinated to N 3 . The pH dependence of the ${ }^{1} \mathrm{H}$ NMR chemical shifts of all three complexes has been studied and the relevant acid/base equilibria established. $\mathbf{1}$ and $\mathbf{3}$ have been isolated in crystalline form, and the crystal structure of a derivative of 3 , containing half a molecule of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}$ per trinuclear complex, is reported. $\left\{\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G})\right\}\left(\mathrm{NO}_{3}\right)_{5} \cdot 0.5\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Pt}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(3 a)$ crystallizes in the space group $P \overline{1}$, with cell dimensions $a=16.393$ (4) $\AA, b=13.889$ (6) $\AA, c=8.437$ (2) $\AA, \alpha=106.34(4)^{\circ}, \beta=94.32(3)^{\circ}, \gamma=92.05$ (3) $)^{\circ}$. The structure was refined to $R=0.067$ and $R_{\mathrm{w}}=0.076$ on the basis of 5811 reflections. The geometries of the triammineplatinum(II) moieties and of the tetrammineplatinum(II) cation are normal. As a consequence of threefold Pt coordination, there are significant changes in ring angles of the purine ligand which are associated with the atoms $\mathrm{N} 9, \mathrm{C} 4$, and C 5.

The chloro(diethylenetriamine)platinum(II) cation, [Pt(dien) Cl$]^{+}$, is frequently used as a model of a heavy-metal electrophile reacting monofunctionally with DNA. ${ }^{2}$ Though it binds covalently to DNA of E. coli as efficiently as the bifunctional antitumor agent cis- $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}_{2},{ }^{3}$ it induces neither the physicochemical changes (CD, UV, apparent shortening, etc.) nor most of the biological responses of the latter, such as antitumor activity, inhibition of DNA synthesis, induction of DNA repair activity, etc. ${ }^{2,4}$ On the other hand, $[\mathrm{Pt}(\text { dien }) \mathrm{Cl}]^{+}$shows some distinct biological effects as well: for example, it is weakly mutagenic, ${ }^{5}$ it derepresses the viral genome in lysogenic bacteria, ${ }^{6}$ and it facilitates the $\mathrm{B} \rightarrow \mathrm{Z}$ conformational transition in poly(dG$\mathrm{dC}) \cdot p o l y(\mathrm{dG}-\mathrm{dC})$ through covalent binding to the polymer, presumably $\mathrm{N}(7)$ of the guanine residue. ${ }^{7}$ Unlike cis- $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}_{2}$ but similar to trans- $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{PtCl}_{2},[\mathrm{Pt}(\mathrm{dien}) \mathrm{Cl}]^{+}$thermally stabilizes DNA, possibly through a similar mechanism as suggested for its interaction with hypoxanthine in poly(I), namely by hydrogen bonding of the NH_{2} groups of the dien ligand to the nucleobases adjacent to the Pt binding site. ${ }^{8}$

The chlorotriammineplatinum(II) a alogue, $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{+}$, has been applied less frequently in studies on the interaction of Pt electrophiles with nucleobases, ${ }^{9}$ though its reactivity can be expected to be similar to that of the dien complex.

We have been interested in reactions of the aquatriaamineplatinum(II) cation, $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{H}_{2} \mathrm{O}\right]^{2+}$, with the model nucleobase 9 -ethylguanine, GH , in order to better understand the behavior of the mixed aqua, guanine complexes cis- and trans-

[^0]$\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}(\mathrm{GH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ which, in the absence of good donor ligands, lead to complicated products. ${ }^{10}$ With N7 being the only crystallographically confirmed Pt binding site of guanine so far, ${ }^{11,12}$ we were particularly interested in donor atoms other than N 7 and conditions leading to their use (Figure 1). While this work was in progress, the preparation and separation of complexes of dienPt ${ }^{11}$ and cis- Pt^{11} with $\mathrm{N} 7, \mathrm{~N} 1$, and $\mathrm{N} 1, \mathrm{~N} 7$ metal binding to $9-$ methylhypoxanthine were described. ${ }^{13}$ In earlier studies, formation of bridges involving $\mathrm{N} 7, \mathrm{~N} 1,{ }^{14} \mathrm{~N} 7, \mathrm{O} 6,{ }^{14,15}$ and $\mathrm{N} 1, \mathrm{O} 6{ }^{15}$ in Pt complexes of 6-oxopurines was proposed, and there has been considerable controversy concerning the possibility of a N7,O6 chelate with cis- $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}(\mathrm{II}) .{ }^{16}$ The N3 position, however, appears to have been widely ignored as a potential metal binding site in 6 -oxopurines, despite the fact that in 6 -aminopurines (adenines) this site has been found to accommodate metal binding. ${ }^{17}$

We herewith report the first example of a guanine complex containing three metals, $\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{II})$, simultaneously bound to this nucleobase, through N7, N1, and N3, and discuss conditions leading to its formation.

[^1]

Figure 1. Composition of the chlorotriammineplatinum(II) cation and of 9 -ethylguanine.

Experimental Section

Starting Materials. $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{PtCl}\right] \mathrm{Cl}^{18}$ and $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{19}$ were prepared as previously described, and 9 -ethylguanine, GH , was obtained from Sigma.

Preparation of Compounds. $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1) was prepared by passing $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ over an anion exchange column in the $\mathrm{NO}_{3}{ }^{-}$form, acidifying the filtrate (pH 6.8 , brought to pH 3.6 with $0.4 \mathrm{~N} \mathrm{HNO}_{3}$), evaporating to dryness, and recrystallizing from water: yield 90%, colorless needles. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{22} \mathrm{~N}_{10} \mathrm{O}_{9} \mathrm{Pt}: \mathrm{C}$, 14.36; H, 3.80; N, 23.93; Pt, 33.32. Found: C, 14.28; H, $3.70 ; \mathrm{N}, 24.55$, Pt, 33.6. The perchlorate of $1,\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right]\left(\mathrm{ClO}_{4}\right)_{2}(1 \mathbf{a})$, was obtained by treating $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ with 2 equiv of $\mathrm{AgClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ in water and crystallization from the acidified $\left(\mathrm{HClO}_{4}\right)$ solution-slightly yellowish crystals. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{Cl}_{2} \mathrm{Pt}$: C, 13.46; H, 2.96; $\mathrm{N}, 17.94$. Found: $\mathrm{C}, 13.44 ; \mathrm{H}, 3.10 ; \mathrm{N}, 17.78$. If the solution (pH 7) is not acidified, besides 1a a second species $\mathbf{1 b}$ (colorless needles) is isolated which analyzes as $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{G})\right] \cdot\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot$ $3 \mathrm{H}_{2} \mathrm{O}$, and which probably crystallizes in a similar way as related complexes with three hydrogen bonds between the neutral and the deprotonated guanine ligand. ${ }^{11,8}$ Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{41} \mathrm{~N}_{16} \mathrm{O}_{17} \mathrm{Cl}_{3} \mathrm{Pt}$: C , 13.99; H, 3.44; N, 18.65; O, 22.62. Found: C, 14.22; H, 3.39; N, 18.04; $\mathrm{O}, 22.89$. Formation of $\mathbf{1 b}$ is reasonable at neutral pH , taking into account that GH in 1 deprotonates with $\mathrm{p} K_{\mathrm{a}} \simeq 8.3$ (determined in 0.1 $\mathrm{M} \mathrm{NaClO}_{4}, 20^{\circ} \mathrm{C}$, potentiometrically in the way described earlier ${ }^{118}$).
$\left\{\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G})\right]\left(\mathrm{NO}_{3}\right)_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (3) was prepared as follows: $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ and $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{PtCl}\right] \mathrm{Cl}(3 \mathrm{mmol})$ were dissolved in 10 mL of water, 8 mmol of AgNO_{3} were added, and the mixture was stirred in a stoppered flask (wrapped in Al foil) for 20 h at $50^{\circ} \mathrm{C} . \mathrm{AgCl}$ was then filtered off, and the clear yellow solution (pH 1.5) was brought to pH 6 by means of 1 N NaOH and then passed over a Sephadex G 10 column. Four products were eluted with water in the following sequence: $\left[\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Pt}_{2}(\mathrm{G})\right]\left(\mathrm{NO}_{3}\right)_{3}(\mathbf{2}), \mathbf{3}, \mathbf{1}$, and $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$. 2 was not obtained analytically pure (contaminated with 3). Collected fractions of $\mathbf{3}$ were recrystallized from water: yield 450 mg, slightly yellow needles. The main batch of 3 analyzed as $\left\{\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}_{3}(\mathrm{G})\right\}\left(\mathrm{NO}_{3}\right)_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{43} \mathrm{~N}_{19} \mathrm{O}_{20} \mathrm{Pt}_{3}: \mathrm{C}$, 6.47; H, 3.34; N, 20.49; O, 24.64; Pt, 45.06. Found: C, 6.54; H, 3.48; $\mathrm{N}, 20.70 ; \mathrm{O}, 24.86 ; \mathrm{Pt}, 45.3$. The crystals selected for the X-ray work crystallized prior to the main product and though the yellowish color appeared to be more intense than with 3 , the IR did not reveal any difference with 3. The crystal structure determination proved that the crystals actually were $\left\{\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G}) \mid\left(\mathrm{NO}_{3}\right)_{5} \cdot 0.5\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2}\right.$. $\mathrm{H}_{2} \mathrm{O}$ (3a). Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{43} \mathrm{~N}_{22} \mathrm{O}_{20} \mathrm{Pt}_{3.5}: \mathrm{C}, 5.84 ; \mathrm{H}, 3.02 ; \mathrm{Pt}$, 47.47. Found: $\mathrm{C}, 5.65 ; \mathrm{H}, 3.16 ; \mathrm{Pt}, 47.0$. The presence of $\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Pt}\right]^{2+}$ in the preparation of 3 may be rationalized as follows: In the last step of the preparation of $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{PtCl}\right] \mathrm{Cl},\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$ is used to precipitate $\left[\mathrm{PtCl}_{4}\right]^{2-}$ as Magnus Green salt. If a slight excess of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$ is used, it shows up in the end product of the $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{PtCl}\right] \mathrm{Cl}$. The presence of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ in 3 a was qualitatively confirmed by reaction with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ which resulted in formation of Magnus Green salt.

Spectra. ${ }^{1}$ H NMR spectra were recorded on a JEOL JNM-FX 60 Fourier transform spectrometer ($30^{\circ} \mathrm{C}, \mathrm{D}_{2} \mathrm{O}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{BF}_{4}$ as internal standard). Shifts are given in ppm relative to sodium 3-(trimethylsilyl)propanesulfonate ($\mathbf{3 . 1 8 6 9} \mathrm{ppm}$ upfield from the internal standard). pD variations were made by use of solutions of NaOD and DNO_{3}. pD values were measured with a glass electrode and obtained by adding 0.4 unit to the meter reading. If $\mathrm{p} K_{\mathrm{a}}$ values measured in $\mathrm{D}_{2} \mathrm{O}$ are compared with $\mathrm{p} K_{\mathrm{a}}$ values obtained in water, 0.4 unit is subtracted from $\mathrm{p} K_{\mathrm{a}}$ $\left(\mathrm{D}_{2} \mathrm{O}\right) .{ }^{20^{2}}\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)\right]^{2+}$ solutions were prepared by reaction of $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{PtCl}\right] \mathrm{Cl}$ with 2 equiv of AgNO_{3} in $\mathrm{D}_{2} \mathrm{O}$.

Crystallography. X-ray data were collected by using a Philips-PW 1100 diffractometer and graphite-monochromated Mo K α radiation (λ $=0.71069 \AA$) at room temperature. The $0.7 \times 0.5 \times 0.4 \mathrm{~mm}$ crystal was sealed in a Lindemann glass capillary. Since this rather large crystal was the only good one and we were afraid to destroy it by cutting, it was used

[^2]Table I. Positional Parameters and Temperature Factors $\left(\AA^{2}\right)$ for the Title Compound

atom	x	y	z	U
Pt 1	0.5000 (0)	1.0000 (0)	0.5000 (0)	0.034 (1)
Pt2	0.8326 (1)	0.8577 (1)	-0.0590 (1)	0.032 (1)
Pt3	0.5245 (1)	0.6584 (1)	-0.0083 (1)	0.021 (1)
Pt4	0.7920 (1)	0.4669 (1)	0.3526 (1)	0.032 (1)
N10	0.6119 (8)	1.0696 (11)	0.4813 (16)	0.045 (12)
N11	0.5558 (9)	0.9241 (10)	0.6505 (18)	0.050 (13)
N20	0.8818 (8)	0.9746 (9)	-0.1314 (21)	0.051 (14)
N21	0.8712 (8)	0.7552 (11)	-0.2593 (18)	0.046 (13)
N22	0.7850 (12)	0.9584 (12)	0.1336 (23)	0.071 (18)
N30	0.5299 (7)	0.5310 (8)	-0.1967 (15)	0.029 (10)
N31	0.4006 (7)	0.6591 (10)	-0.0584 (15)	0.036 (11)
N32	0.5215 (7)	0.7846 (9)	0.1856 (16)	0.035 (11)
N40	0.8616 (10)	0.3809 (11)	0.1862 (21)	0.058 (16)
N41	0.7679 (9)	0.3459 (12)	0.4373 (19)	0.055 (15)
N42	0.7159 (8)	0.5534 (11)	0.5186 (16)	0.042 (12)
N1	0.6485 (6)	0.6643 (8)	0.0367 (14)	0.024 (9)
C2	0.6954 (7)	0.7255 (10)	-0.0270 (16)	0.022 (10)
N2'	0.6589 (8)	0.7683 (11)	-0.1374 (18)	0.065 (14)
N3	0.7772 (7)	0.7445 (9)	0.0130 (15)	0.034 (11)
C4	0.8129 (9)	0.6928 (10)	0.1149 (18)	0.033 (13)
C5	0.7653 (9)	0,6268 (10)	0.1727 (16)	0.027 (11)
C6	0.6801 (8)	0.6124 (9)	0.1444 (16)	0.023 (10)
O6 ${ }^{\prime}$	0.6355 (5)	0.5608 (7)	0.1984 (13)	0.034 (9)
N7	0.8198 (7)	0.5857 (9)	0.2664 (15)	0.030 (10)
C8	0.8936 (9)	0.6255 (12)	0.2637 (20)	0.039 (14)
N9	0.8890 (7)	0.6934 (10)	0.1727 (17)	0.037 (11)
C 9^{\prime}	0.9683 (10)	0.7512 (16)	0.1515 (25)	0.055 (19)
C9'1	0.9826 (16)	0.8348 (16)	0.2849 (27)	0.077 (26)
N50	0.7509 (14)	0.1618 (20)	-0.1746 (27)	0.091 (26)
O50	0.7038 (13)	0.2196 (14)	-0.2186 (25)	0.104 (24)
O51	0.7990 (15)	0.1824 (17)	-0.0379 (26)	0.139 (30)
052	0.7511 (11)	0.0735 (13)	-0.2617 (22)	0.101 (20)
N60	0.9207 (10)	0.1701 (13)	0.2974 (23)	0.059 (17)
060	0.9594 (10)	0.2552 (12)	0.3465 (25)	0.093 (20)
061	0.8474 (10)	0.1631 (13)	0.3312 (32)	0.120 (27)
062	0.9574 (10)	0.0969 (14)	0.2209 (25)	0.100 (22)
N70	0.5415 (8)	0.3330 (10)	0.4836 (17)	0.042 (13)
070	0.5805 (7)	0.3983 (10)	0.4365 (15)	0.052 (12)
071	0.4693 (7)	0.3223 (12)	0.4451 (20)	0.076 (16)
072	0.5733 (9)	0.2872 (9)	0.5687 (16)	0.060 (14)
N80	0.7399 (8)	0.8384 (10)	0.4551 (16)	0.039 (12)
080	0.7104 (9)	0.7899 (12)	0.5432 (19)	0.076 (17)
081	0.6945 (8)	0.8710 (10)	0.3651 (17)	0.057 (13)
082	0.8168 (8)	0.8533 (10)	0.4653 (17)	0.061 (14)
N90	0.6003 (11)	0.0863 (12)	0.0776 (22)	0.059 (17)
090	0.5901 (17)	0.1595 (14)	0.1913 (25)	0.132 (33)
091	0.5942 (16)	0.0916 (15)	-0.0611 (22)	0.116 (30)
O92	0.6043 (13)	0.0040 (12)	0.1029 (25)	0.103 (23)
N100	0.0985 (11)	0.4956 (14)	0.2037 (30)	0.084 (23)
O100	0.1567 (10)	0.4468 (12)	0.2052 (22)	0.085 (19)
O101	0.0336 (13)	0.4655 (23)	0.2259 (62)	0.285 (76)
O102	0.1094 (17)	0.5800 (19)	0.1985 (47)	0.204 (54)
0110	0.3029 (9)	0.5635 (11)	0.1901 (19)	0.069 (15)

in its original size. A least-squares calculation with the diffractometer settings for 34 reflections ($24^{\circ}<2 \theta<43^{\circ}$) of the triclinic crystal gave the following cell parameters: $a=16.393$ (4) $\AA, b=13.889$ (6) \AA, c $=8.437(2) \AA, \alpha=106.34(4)^{\circ}, \beta=94.32(3)^{\circ}, \gamma=92.05(3)^{\circ}, U=$ $1834.8 \AA^{3}$. The space group, consistent with the solution and refinement of the structure, is $P \overline{1}$. For $\mathrm{C}_{7} \mathrm{H}_{43} \mathrm{~N}_{22} \mathrm{O}_{20} \mathrm{Pt}_{3.5}$ with $M=1483.3 \mathrm{~g} / \mathrm{mol}$ and $Z=1, d_{\text {calcd }}=2.603 \mathrm{~g} / \mathrm{cm}^{3}, d_{\text {obsd }}=2.60 \mathrm{~g} / \mathrm{cm}^{3}$.

A total of 6460 unique reflections were measured by using $\theta / 2 \theta$ scans $\left(\theta_{\max }=25^{\circ}\right)$. For the subsequent calculations the set of 5811 reflections with $F_{0} \geq 2 \sigma\left(F_{0}\right)$ was used. Lp and (in a later stage) empirical absorption corrections ($\left.\mu=129 \mathrm{~cm}^{-1}\right)^{21}$ were applied.

The positions of the $\mathrm{Pt} 2, \mathrm{Pt} 3$, and Pt 4 atoms were determined from a Patterson map, and the coordinates of the other non-hydrogen atoms were determined in ΔF syntheses. Hydrogen atoms were ignored at all stages. All atoms were refined with anisotropic thermal parameters; R $=0.067, R_{w}=0.076, w^{-1}=\sigma^{2}(F)+0.005 F^{2}$. Final atomic coordinates and the $U_{\text {eq }}$ values are given in Table I. Thermal anisotropic parameters are included in the supplementary material. The highest peak in the final difference map was $2.8 \mathrm{e} \AA^{-3}$ (1.1 \AA away from Pt 2$)$. Complex scattering
(21) Walker, N.; Stuart, D. Acta Crystallogr., Sect. A 1983, A39, 158.

Figure 2. ${ }^{1} \mathrm{H}$ NMR spectra in $\mathrm{D}_{2} \mathrm{O}$: (a) $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right]\left(\mathrm{NO}_{3}\right)_{2}(\mathbf{1})(0.1 \mathrm{M}, \mathrm{pD} 6)$; (b) $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$ and 1 (0.1 M each, pD 6.7$)$ after 4 h at $50^{\circ} \mathrm{C}$ (pD then readjusted from 1.6 to 7.2) and an additional 16 h at $50^{\circ} \mathrm{C}$ (without addition of NaOD the yield of 2 is somewhat lower); (c) $\left[\left(\mathrm{ND}_{3}\right)_{9} \mathrm{Pt}_{3}(\mathrm{G})\right]\left(\mathrm{NO}_{3}\right)_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}(3)(0.1 \mathrm{M} \mathrm{G}, \mathrm{pD} 6)$. The reference is $\mathrm{NMe}_{4}{ }^{+}$.
factors for the neutral atoms were taken from ref 22 and 23 . For the calculations the SHELX program package was used. ${ }^{24}$

Results

Solution Studies. Reaction of GH with $\left[\left(\mathrm{ND}_{3}\right)_{3} \operatorname{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)\right]^{2+}$ $(r=1, \mathrm{pD} 4.6)$ gives $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right]^{2+}$ (1) as the exclusive reaction product, containing the GH ligand bound to Pt through N 7 as evident from ${ }^{195} \mathrm{Pt}$ coupling with H 8 of $\mathrm{G}\left({ }^{3} J=24.4 \mathrm{~Hz}\right)$. With an excess of $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)\right]^{2+}$ over GH , or with $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)\right]^{2+}$ added to dissolved $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right]^{2+}(\mathbf{1})$ $\left(c_{\mathrm{Pt}}: c_{\mathrm{PtGH}}=1,1.5,2,3\right)$, three sets of ${ }^{1} \mathrm{H}$ NMR signals were observed, which were assigned to the mononuclear 1 , the dinuclear complex $\left[\left(\mathrm{ND}_{3}\right)_{3} \operatorname{Pt}(\mathrm{G}) \operatorname{Pt}\left(\mathrm{ND}_{3}\right)_{3}\right]^{3+}(2)$, and the trinuclear complex $\left\{\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G})\right\}^{5+}$ (3). A typical sequence of spectra is shown in Figure 2, and the pD dependence of the three sets of resonances is shown in Figure 3. All three H 8 resonances exhibit ${ }^{195} \mathrm{Pt}^{1}{ }^{1} \mathrm{H}$ coupling (24.4 Hz (1), (3), 24.6 Hz (2)), indicating that all three species contain Pt bound through N7. As can be seen, 1 becomes deprotonated with a $\mathrm{p} K_{\mathrm{a}} \simeq 8.7$, which is consistent with the potentiometric $\mathrm{p} K_{\mathrm{a}}$ determination of $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right] \mathrm{Cl}_{2}$ in water (8.3, cf. Experimental Section). In strongly acidic medium, the GH ligand is protonated to give $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{GH}_{2}\right)\right]^{3+}$ ($0 \leqq \mathrm{p} K_{\mathrm{a}} \leqslant 0.4$). Neither 2 nor $\mathbf{3}$ are deprotonated below pD 10, suggesting that the 9 -ethylguanine ligand in these compounds is already deprotonated and that deprotonation of the NH_{2} group at the 2 -position has not started yet. 2 is protonated below pD 3 to give $\left[\left(\mathrm{ND}_{3}\right)_{3} \operatorname{Pt}(\mathrm{GH}) \operatorname{Pt}\left(\mathrm{ND}_{3}\right)_{3}\right]^{4+}\left(\mathrm{p} K_{\mathrm{a}} \simeq 1.9\right) .3$ does not exhibit any pH dependence in the range $0<\mathrm{pD}<10$. As is to be seen from Figure 3, at $\mathrm{pD} \simeq 0.4$ the H 8 resonances of all three species are identical.

It was the enormous downfield shift of 1.5 ppm of the CH_{2} group of the 9 -ethylguanine ligand in 3 which indicated a Pt coordination site relatively close to the methylene group and
(22) Cromer, D. T.; Mann, J. B. Acta Crystallogr., Sect. A 1968, A24, 321.
(23) Cromer, D. T.; Libermann, D. J. Chem. Phys. 1970, 53, 1891.
(24) Sheldrick, G. M.; sHELX program package, University of Göttingen,

Figure 3. pD dependence of chemical shifts of individual resonances of the mononuclear complex 1, the dinuclear complex 2, and the trinuclear complex 3.
prompted the crystal structure determination of 3 .
Crystal Structure of 3a. A pair of centrosymmetrically arranged cations of $\left\{\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G})\right\}^{5+}$ is shown in Figure 4. In addition,

Figure 4. View of 3a, consisting of a pair of centrosymmetrically arranged $\left\{\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G})\right\}^{5+}$ cations and a $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ cation in the center of inversion between the two trinuclear species.
there is a $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ cation with Pt on the inversion center, and there are six nitrate anions and six molecules of water of crystallization per pair of $\mathbf{3}$ which are not shown. Table II lists interatomic distances and angles of the cations. Structural data of the nitrates, possible hydrogen bonding interactions, and dihedral angles are deposited as Supplementary Material. Pt coordination in 3a is through N7, the deprotonated N1 position, and through N3 of the 9 -ethylguanine. The geometries of the three triammineplatinum(II) residues and of the tetrammineplatinum(II) cation are normal. Due to the relatively large errors, bond lengths of the deprotonated guanine in 3a cannot be said to differ significantly from values reported for free GH^{25} or guanosine, ${ }^{26}$ for its hemiprotonated form $\mathrm{H}(\mathrm{HG})_{2}{ }^{+},{ }^{27}$ the fully protonated $\mathrm{GH}_{2}{ }^{+},{ }^{28}$ and N 7 platinated $\mathrm{GH},{ }^{11 \mathrm{~g}, \mathrm{j}}$ except the $\mathrm{N} 9-\mathrm{C} 4$ bond: it is somewhat shorter in 3a than in the non-platinated GH structures mentioned above (1.30 (2) \AA vs. 1.373 (3) to 1.382 (5) \AA). Despite the large errors, there are several significant changes in bond angles as compared to neutral GH or its protonated forms, however. All these differences are associated with atoms N9, C4, and C5. For example, as the Pt coordinates to N 3 it pushes away the ethyl group in the 9 -position, increasing the $\mathrm{C} 4-\mathrm{N} 9-\mathrm{C} 9^{\prime}$ angle ($\sim 6^{\circ}$) and simultaneously decreasing the adjacent $\mathrm{C} 9^{\prime}-\mathrm{N} 9-\mathrm{C} 8$ angle $\left(\sim 8^{\circ}\right)$. At C 4 , one of the internal ring angles ($\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$) and the external one ($\mathrm{N} 3-\mathrm{C} 4-\mathrm{N} 9$) become larger, by $\sim 5^{\circ}$ and $\sim 8^{\circ}$. The internal ring angles at C5 are affected differently, with $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ becoming larger ($\sim 5^{\circ}$) and $\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 7$ decreasing to the same extent. There is also an increase in the internal angle at N3 ($\sim 4^{\circ}$ in 3a) which, though below significance, shows the expected trend for fixation of a substituent. ${ }^{29}$ As compared to 9 -ethylguanine complexes with N7 platinum binding only, ${ }^{11 g . j}$ at least the following angles are significantly different in 3a: C8$\mathrm{N} 9-\mathrm{C} 9^{\prime}$ and $\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$ in 3a are larger by $\sim 8^{\circ}$.

The G ring in 3a is slightly nonplanar (cf. Supplementary Material). This refers in particular to the exocyclic groups C^{\prime}, O^{\prime}, and $\mathrm{N} 2^{\prime}$. All three Pt atoms coordinated to the guanine ring are markedly out of the plane, $\operatorname{Pt}(4)$ at N 7 most pronounced $(-0.39 \AA)$, followed by $\operatorname{Pt}(2)$ at $\mathrm{N} 3(0.29 \AA)$ and $\mathrm{Pt}(3)$ at $\mathrm{N} 1(0.18$ \AA). While the Pt coordination planes of the $\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}$ moieties binding through N1 and N3 are roughly perpendicular to the guanine plane (96.6° and 80.8°), the dihedral angle between the plane of $\mathrm{Pt}(4)$, which coordinates through N 7 , and G is consid-

[^3]Table II. Interatomic Distances (\AA) and Angles (deg) of the Cations in $\left\{\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G}) \mid\left(\mathrm{NO}_{3}\right)_{5} \cdot 0.5\left[\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Pt}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 1 \mathrm{H}_{2} \mathrm{O}(3 \mathrm{a})\right.$

	(a) Pt Coordination Spheres		
$\mathrm{Pt} 1-\mathrm{N} 10$	$2.08(1)$	$\mathrm{N} 10-\mathrm{Pt} 1-\mathrm{N} 11$	$90.8(6)$
$\mathrm{Pt} 1-\mathrm{N} 11$	$2.05(2)$	$\mathrm{N} 20-\mathrm{Pt} 2-\mathrm{N} 21$	$91.5(6)$
$\mathrm{Pt} 2-\mathrm{N} 20$	$2.05(2)$	$\mathrm{N} 20-\mathrm{Pt} 2-\mathrm{N} 22$	$89.8(7)$
$\mathrm{Pt} 2-\mathrm{N} 21$	$2.04(1)$	$\mathrm{N} 20-\mathrm{Pt} 2-\mathrm{N} 3$	$176.7(5)$
$\mathrm{Pt} 2-\mathrm{N} 22$	$2.05(2)$	$\mathrm{N} 21-\mathrm{Pt} 2-\mathrm{N} 22$	$175.7(6)$
$\mathrm{Pt} 2-\mathrm{N} 3$	$2.05(1)$	$\mathrm{N} 21-\mathrm{Pt} 2-\mathrm{N} 3$	$90.3(6)$
$\mathrm{Pt} 3-\mathrm{N} 30$	$2.03(1)$	$\mathrm{N} 22-\mathrm{Pt} 2-\mathrm{N} 3$	$88.3(6)$
$\mathrm{Pt} 3-\mathrm{N} 31$	$2.04(1)$	$\mathrm{N} 30-\mathrm{Pt} 3-\mathrm{N} 31$	$91.4(4)$
$\mathrm{Pt} 3-\mathrm{N} 32$	$2.04(1)$	$\mathrm{N} 30-\mathrm{Pt} 3-\mathrm{N} 32$	$178.2(5)$
$\mathrm{Pt} 3-\mathrm{N} 1$	$2.03(1)$	$\mathrm{N} 30-\mathrm{Pt} 3-\mathrm{N} 1$	$89.6(4)$
$\mathrm{Pt} 4-\mathrm{N} 40$	$2.02(2)$	$\mathrm{N} 31-\mathrm{Pt} 3-\mathrm{N} 32$	$89.9(5)$
$\mathrm{Pt} 4-\mathrm{N} 41$	$2.04(2)$	$\mathrm{N} 31-\mathrm{Pt} 3-\mathrm{N} 1$	$176.8(5)$
$\mathrm{Pt} 4-\mathrm{N} 42$	$2.09(1)$	$\mathrm{N} 32-\mathrm{Pt} 3-\mathrm{N} 1$	$89.1(4)$
$\mathrm{Pt} 4-\mathrm{N} 7$	$2.03(1)$	$\mathrm{N} 40-\mathrm{Pt} 4-\mathrm{N} 41$	$88.9(7)$
		$\mathrm{N} 40-\mathrm{Pt} 4-\mathrm{N} 42$	$177.7(5)$
		$\mathrm{N} 40-\mathrm{Pt} 4-\mathrm{N} 7$	$89.5(6)$
		$\mathrm{N} 41-\mathrm{Pt} 4-\mathrm{N} 42$	$90.7(6)$
		$\mathrm{N} 41-\mathrm{Pt} 4-\mathrm{N} 7$	$178.1(5)$
		$\mathrm{N} 42-\mathrm{Pt} 4-\mathrm{N} 7$	$90.9(5)$

(b) Guanine Ligand			
N1-C2	1.37 (2)	Pt3-N1-C6	117 (1)
$\mathrm{C} 2-\mathrm{N} 2^{\prime}$	1.35 (2)	Pt3-N1-C2	119 (1)
C2-N3	1.36 (2)	C6-N1-C2	124 (1)
N3-C4	1.38 (2)	N2'-C2-N1	119 (1)
C4-C5	1.40 (2)	N2'-C2-N3	118 (1)
C5-C6	1.40 (2)	N1-C2-N3	123 (1)
C6-O6 ${ }^{\prime}$	1.20 (2)	Pt2-N3-C2	118 (1)
C6-N1	1.39 (2)	$\mathrm{Pt} 2-\mathrm{N} 3-\mathrm{C} 4$	126 (2)
C5-N7	1.39 (2)	C2-N3-C4	116 (1)
N7-C8	1.32 (2)	N9-C4-N3	131 (2)
C8-N9	1.37 (2)	N9-C4-C5	109 (1)
N9-C9 ${ }^{\prime}$	1.55 (2)	N3-C4-C5	120 (1)
C9'-C9 ${ }^{\prime \prime}$	1.37 (3)	N7-C5-C4	106 (1)
N9-C4	1.30 (2)	N7-C5-C6	130 (1)
		C4-C5-C6	125 (1)
		O6'-C6-C5	128 (1)
		O6'-C6-N1	121 (1)
		C5-C6-N1	112 (1)
		Pt4-N7-C5	125 (1)
		$\mathrm{Pt} 4-\mathrm{N} 7-\mathrm{C} 8$	127 (1)
		C5-N7-C8	108 (1)
		N7-C8-N9	110 (1)
		C9'-N9-C8	120 (1)
		C 9 '-N9-C4	132 (2)
		C8-N9-C4	108 (1)
		$\mathrm{C} 9^{\prime \prime}-\mathrm{C} 9{ }^{\prime}-\mathrm{N} 9$	108 (2)

erably smaller $\left(64.8^{\circ}\right)$ and close to the value found in [(dien)Pt (guanosine) $]^{2+}$ with Pt binding to N 7 as well. ${ }^{11 \mathrm{e}}$ Although the intramolecular distance between $\mathrm{NH}_{3}(42)$ and O^{\prime} is reasonably short for an intramolecular H -bonding interaction ($2.95 \AA$), the small angle around N42 $\left(79^{\circ}\right)$ makes such an interaction unlikely. Rather, the orientation of the Pt 4 plane appears to be dictated by intermolecular hydrogen bonding between the ammonia groups N42, N41, and N40 with oxygens of the nitrate groups.
The existence of half a molecule of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ per $\mathrm{Pt}_{3}(\mathrm{G})$ in 3a was unexpected and presented some problem in understanding its origin. As outlined in the Experimental Section, an impurity of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$ in $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Cl}$ can be rationalized on the basis of the preparation of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Cl}$. Originally we also considered the possibility that trans- $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ might be present since we earlier had shown that $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Cl}$ can be converted into trans- $\left(\mathrm{NH}_{3}\right)_{2} \mathrm{TpCl}_{2}$ with loss of $\mathrm{NH}_{3} .{ }^{30}$ The presence of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ in 3 3a was eventually confirmed by reaction with $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ which gave Magnus Green salt. Thus, although the bulk product consisted of $\left[\left(\mathrm{NH}_{3}\right)_{9} \mathrm{Pt}_{3}(\mathrm{G})\right]$ $\left(\mathrm{NO}_{3}\right)_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}(3)$, the crystal selected for the structure determination was from a small impurity of the $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]$ adduct 3a.
(30) Lippert, B.; Lock, C. J. L.; Speranzini, R. A. Inorg. Chem. 1981, 20 , 808.

Figure 5. Schematic description of the effect of Pt binding to the deprotonated N1 position of guanine. Addiitonal Pt binding through N7, as in 2, is expected to reduce the electron density at O 6 and/or N3. Nevertheless, binding of a third Pt is still possible as can be seen from the formation of 3 .

Discussion

Free 9-ethylguanine, GH , deprotonates (at N 1) with a $\mathrm{p} K_{1} \simeq$ 9.8^{31} and becomes protonated (at $\mathrm{N} 7^{28}$) with a $\mathrm{p} K_{2} \simeq 2.7 .^{31}$ Under strongly acidic conditions, e.g., in $\mathrm{CF}_{3} \mathrm{COOD},{ }^{32} \mathrm{G}$ is doubly protonated with the second added proton probably at N3:32

Pt binding to N 7 as in $\mathbf{1}$ increases the acidity of the proton at N 1 by ca. $1.5 \log$ units, in agreement with findings in similar complexes. ${ }^{11 g, 13}$ It is consistent with the electron-withdrawing effect of the Pt electrophile at N 7 that the acidity of the protonated $\mathrm{GH}_{2}{ }^{+}$ligand in the Pt complex ($\mathrm{p} K_{2} \simeq 0$) is higher as well (by $2.7 \log$ units). The site of protonation which, in free G, is N7 must be different in $\mathbf{1}$, and probably it is N3. ${ }^{33}$

With the diplatinated complexes $\mathrm{Pt}_{2}\left(\mathrm{G}-N^{1}, N^{7}\right)$ (2) protonation occurs relatively easily, with $\mathrm{p} K_{1} \simeq 1.5 .{ }^{34}$ This behavior may best be explained by an increase in basicity of the pyrimidine part of the purine ring as a consequence of the substitution of the proton at N 1 by $\mathrm{Pt}(\mathrm{II})$ and the smaller polarizing effect of Pt relative to H .

$$
\mathrm{Pt}_{2}\left(\mathrm{GH}-N^{1}, N^{7}\right) \underset{\substack{+\mathrm{H}^{+} \\ \mathrm{p} K_{1}=1.5}}{-\mathrm{H}^{+}} \mathrm{Pt}_{2}\left(\mathrm{G}-N^{1}, N^{7}\right)
$$

Compared to guanine blocked at N 1 and N 7 by a proton $\left(\mathrm{GH}_{2}{ }^{+}\right)$, the guanine blocked by Pt at these sites (2) is more basic by several orders of magnitude. A rather similar situation is observed with N3 platinated uracil and thymine nucleobases: there, substitution of the proton at N 3 by $\mathrm{Pt}(\mathrm{II})$ increases the affinity of O 4 to accept a proton by $4-5 \log$ units. ${ }^{35}$ As a consequence of this increased
(31) $\mathrm{p} K_{\mathrm{a}}$ values reported for 9-methylguanine only: Frederick, W.; Bernhauer, K. Z. Physiol. Chem. 1959, 317, 116.
(32) Wagner, R.; von Philipsborn, W. Helv. Chim. Acta 1971, 54, 1543.
(33) Terzis, A.; Mentzafos, D. Inorg. Chem. 1983, 22, 1140.
(34) $\mathrm{p} K_{\mathrm{a}}$ converted to water as solvent.
(35) (a) Lippert, B. Inorg. Chim. Acta 1981, 55, 5. (b) Lippert, B.; Thewalt, U.; Schöllhorn, H.; Goodgame, D. M. L.; Rollins, R. W. Inorg. Chem. 1984, 23, 2807.
basicity, instead of a proton also a metal ion can be bound to this site, leading to a large class of dinuclear and higher nuclear complexes. ${ }^{36}$

The formation of the trinuclear complex $\mathbf{3}$ can be attributed to a similar effect of the Pt at Nl (Figure 5) and can be expected to be largest in the case of the N1 platinated complex (which has not been prepared in the present work). Despite the partial cancellation of this electron-releasing effect of Pt at Nl by the electron-withdrawing Pt at N 7 , the remaining basicity in the pyrimidine part of the purine is high enough to accommodate binding of the third Pt at N3. This interpretation is supported by the ${ }^{1} \mathrm{H}$ NMR spectra: 3 is always formed simultaneously with 2 rather than only after all free $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)\right]^{2+}$ is used up for formation of 2 , that is after addition of more than 1 equiv of $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)\right]^{2+}$ to 1 .

Formation of 2 bears another important aspect: though the $\mathrm{p} K_{\mathrm{a}}$ for deprotonation of GH in 1 is 8.3 , deprotonation of it is achieved simply by adding excess Pt to a solution of $\mathbf{1}$, as is evident from the drop of pH during the formation of 2 .

Conclusion

A compound is described that contains three $\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}{ }^{\mathbf{l l}}$ residues coordinated to 9 -ethylguanine. It is the first crystallographically studied example of a complex of a 9 -substituted guanine with metal binding sites other than N7. Formation of this compound occurs in steps, with the N7 platinated and the N7,N1 diplatinated complexes being the precursors. Binding of the third Pt to N3 is a consequence of the electron-releasing effect of the Pt substituting the proton at N 1 . The results suggest that the sequence of nucleophilicity of guanine steps toward $\mathrm{Pt}(\mathrm{II})$ is $\mathrm{N} 7>\mathrm{N} 1>$ N3. There is no convincing argument why, for steric reasons, O6 should not be used in N 7 platinated GH as a second, or in $\mathrm{N} 7, \mathrm{~N} 1$ diplatinated G as third metal binding site, unless for electronic reasons, viz., that N3 is more basic than O6.
Acknowledgment. This work has been supported by the Deutsche Forschungsgemeinschaft, DFG, the Technische Universität München, and Degussa (loan of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$). We thank A. Filippou for some experimental assistance.

Registry No. 1, 96306-86-4; 1a, 96306-87-5; 1b, 96306-89-7; 2, 96306-91-1; 3, 96306-93-3; 3a, 96306-95-5; [($\left.\left.\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right]^{2+}, 96306-$ 96-6; $\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}(\mathrm{G}) \mathrm{Pt}\left(\mathrm{ND}_{3}\right)_{3}\right]^{3+}, 96306-97-7 ;\left\{\left.\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\right]_{3}(\mathrm{G})\right|^{5+}\right.$, 96306-98-8; [($\left.\left.\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}(\mathrm{GH})\right] \mathrm{Cl}_{2}, 88005-66-7 ;\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{PtCl}\right] \mathrm{Cl}, 13815-$ 16-2; $\left[\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}, 79084-74-5 ;\left[\left(\mathrm{ND}_{3}\right)_{3} \mathrm{Pt}\left(\mathrm{D}_{2} \mathrm{O}\right)\right]^{2+}$, 96306-99-9.

Supplementary Material Available: Tables of atomic and thermal parameters and observed and calculated structure factors and interatomic distances, angles, and deviations of atoms from planes (30 pages). Ordering information is given on any current masthead page.

[^4]
[^0]: (1) (a) Technical University Munich. (b) University Ulm
 (2) Macquet, J. P.; Butour, J. L.; Johnson, N. P. In "Platinum Gold, and Other Metal Chemotherapeutic Agents"; Lippard, S. J.; Ed.; American Chemical Society: Washington, D. C., 1983; ACS Symp. Ser. 209, pp 75-100.
 (3) Alazard, R.; Germanier, M.; Johnson, N. P. Mutat. Res. 1982, 93, 327.
 (4) Johnson, N. P.; Macquet, J. P.; Wiebers, J. L.; Monsarrat, B. Nucleic Acids Res. 1982, 10, 5255.
 (5) Lecointe, P.; Macquet, J. P.; Butour, J. L.; Paoletti, C. Mutat. Res. 1977, 48, 139.
 (6) Lecointe, P.; Macquet, J. P.; Butour, J. L. Biochem. Biophys. Res. Commun. 1979, 90, 209.
 (7) (a) Malfoy, B.; Hartmann, B.; Leng, M. Nucleic Acids Res. 1981, 9, 5659. (b) Ushay, H. M.; Santella, R. M.; Caradonna, J. P.; Grunberger, D.; Lippard, S. J. Ibid. 1982, 10, 3573.
 (8) Hermann, D.; Fazakerley, G. V.; Guschlbaur, W. Biopolymers 1984, 23, 973.
 (9) (a) lnagaki, K.; Tamaoki, N.; Kidani, Y. Inorg. Chim. Acta 1980, 46, L 93. (b) Inagaki, K.; Kidani, Y. Ibid. 1980, 46, 35.

[^1]: (10) Raudaschl-Sieber, G.; Marzilli, L. G.; Lippert, B.; Shinozuka, K. Inorg. Chem. 1985, 24, 989.
 (11) (a) Gellert, R. W.; Bau, R. J. Am. Chem. Soc. 1975, 97, 7379. (b) Bau, R.; Gellert, R. W. Biochimie 1978, 60, 1040. (c) Marzilli, L. G.; Chalilpoyil, P.; Chiang, C. C.; Kistenmacher, T. J. J. Am. Chem. Soc. 1980, 102, 2480. (d) Cramer, R. E.; Dahlstrom, P. L.; Seu, M. J. T.; Norton, T.; Kashiwagi, M. Inorg. Chem. 1980, 19, 148. (e) Melanson, R.; Rochon, F. D. Can. J. Chem. 1979, 57, 57. (f) Faggiani, R.; Lock, C. J. L.; Lippert, B. J. Am. Chem. Soc. 1980, 102, 5418. (g) Faggiani, R.; Lippert, B.; Lock, C. J. L.; Speranzini, R. A. Inorg. Chem. 1982, 21, 3216. (h) Orbell, J. D.; Solarzano, C.; Marzilli, L. G.; Kistenmacher, T. J. Inorg. Chem. 1982, 21 , 3806. (i) Korte, H. J.; Bau, R. Inorg. Chim. Acta 1983, 79, 251. (j) Lippert, B.; Raudaschl, G.; Lock, C. J. L.; Pilon, P. Inorg. Chim. Acta 1984, 93, 43.
 (12) With 6 -oxopurines blocked at the N 7 position, e.g., 7,9 -dimethylhypoxanthine, also N 1 metal binding is observed. Cf.: Kistenmacher, T. J.; de Castro, B.; Wilkowski, K.; Marzilli, L. G. J. Inorg. Biochem. 1982, 16, 33 and references cited therein.
 (13) den Hartog, J. H. J.; Salm, M. L.; Reedijk, J. Inorg. Chem. 1984, 23, 2001.
 (14) Chu, G. Y. H.; Mansy, S.; Duncan, R. E.; Tobias, R. S. J. Am. Chem. Soc. 1978, 100, 593.
 (15) Hadjiliadis, N.; Theophanides, T. Inorg. Chim. Acta 1976, 16, 77.
 (16) For a critical evaluation of the $N(7), O(6)$ chelate hypothesis see ref 14.
 (17) (a) Hubert, J.; Beauchamp, A. L. Acta Crystallogr., Sect. B 1980, B36, 2613. (b) Wei, C. H.; Jacobson, K. B. Inorg. Chem. 1981, $20,356$.

[^2]: (18) Tschugaev, A. J. Chem. Soc. 1915, 107, 1247.
 (19) Raudaschl, G.; Lippert, B. Inorg. Chim. Acta 1983, 80, L 49.
 (20) Scheller, K. H.; Scheller-Krattiger, V.; Martin, R. B. J. Am. Chem. Soc. 1981, 103, 6833.

[^3]: (25) Destro, R.; Kistenmacher, T. J.; Marsh, R. E. Acta Crystallogr., Sect. B 1974, B30, 79 .
 (26) Thewalt, U.; Bugg, C. E.; Marsh, R. E. Acta Crystallogr., Sect. B 1970, B26, 1089.
 (27) Mandel, G. S.; Marsh, R. E. Acta Crystallogr., Sect. B 1975, B3I, 2862.
 (28) Purnell, L. G.; Hodgson, D. J. J. Am. Chem. Soc. 1976, 98, 4759. (29) Singh, C. Acta Crystallogr. 1965, 19, 861.

[^4]: (36) (a) Neugebauer, D.; Lippert, B. J. Am. Chem. Soc. 1982, 104, 6596. (b) Schöllhorn, H.; Thewalt, U.; Lippert, B. Chem. Commun. 1984, 769. (c) Thewalt, U.; Neugebauer, D.; Lippert, B. Inorg. Chem. 1984, 23, 1713.

